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METHOD OF DIMENSIONLESS COEFFICIENTS
FOR ANALYSIS OF STRUCTURALLY ORTHOTROPIC PLANE
STRUCTURES

PART 1

RiCHARD BARES

1. INTRODUCTION

A rapid and sufficiently exact method of analysis of structurally orthotropic plane
structures — such as e.g. unequally reinforced slabs, slabs stiffened by beams, grids
with or without slabs — will always be of great interest to a specialist. In the present
paper the fundaments of a theory, called the method of dimensionless coefficientst
as well as procedures of practical analysis of the bridge systems mentioned above are
given. This method enables not only to effectively employ computers in every given
case but also to calculate in advance and to tabulate certain dimensionless coefficients
(four basic and ten complementary ones) for a rapid and easy analysis of all
necessary inner forces in the structure in dependence on three dimensionless para-
meters: the parameters of lateral stiffness, torsional rigidity and contraction ability.
If the present method is applied, much time may be spared for the designers. More-
over, since the transverse contraction is taken into account, the method gives a better
picture of the behaviour of structures considered than other methods usually used.

2, BASIC RELATIONS

2.1. Materially orthotropic plate

The adoption of usual simplifying assumptions of the technical small-deflection
theory of plates, i.c.

— plate material is perfectly elastic and homogeneous
— plate thickness is uniform and small in comparison to the other dimensions of
the plate
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— the Kirchhoff-Love’s hypothesis holds true, i.e. linear fibres which are initially
normal to the middle surface of the plate remain straight and normal to the

middle surface of the plate after bending

— normal stresses in the direction transverse to the plane of the plate are negligible
and the thickness of the plate does not undergo any deformation during bending

— plate deformations are small in comparison with the plate thickness
— there is no normal strain in planes tangent to the middle surface of the plate

— the body forces are either be disregarded or assumed to be a part of external load

— loading vector is perpendicular to the plane of the plate,

results in the well — known partial differential equation of anisotropic plate

o*w o*w o*w “w

1 Ay —— + 2017 + 2044) ——— + 4024 ——

(1) en Py Q14 ax*0y (012 ) ax20y? Q24 xdy?
—p(x,y)=0

provided that the conventional procedure of the plate theory has been anployed.
Introducing in agreement with [5] the reciprocal theorem of Betti

(2) Vxly = Vy0x

or v.E, = v,E;

respectively, Eq. (1) reverts in the case of an orthotropic plate 1o
4

(3) Q,ZT:’+2H‘;—:‘;V},—2+Q,Z4—}’V£—p(x,y)=O,

where

4 2H = 47, + 0u¥y + 0,Vs

and g,, 0,, ¥x, denote flexural and torsional rigidities of the plate.')

1) For a materially orthotropic plate we have
_ Ed® _ Ed® _ Gd?
TR —vy) YT RU—vyy) T 2
Introducing [5, 9] _ J(E,E,)
200 + /o)’
with some calculation we obtain
2H =2 /(ex0y) -

Since H = 25— Ed®
“T =

for an isotropic plate, Eq. (3) reduces to
1
Viw = = p(x, »)
Q

in this case.
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2.2. Structurally orthotropic plane structures

In the foregoing section the material has been assumed to be homogeneous and
orthotropic, i.e. its elastic properties were symmetric with respect to three orthogonal
planes. In practice, the plate orthotropy appears either because of an unequal reinfor-
cement of prestress of the plate in two perpendicular directions, or because of the
connection of the plate to a set of beams or girders either in longitudinal or in trans-
versal direction or in the both directions, respectively. Similar result can be reached
by prevented or by intentional reduction of some force transfer in the transverse
direction (multi-beam bridges).

Thus, a materially orthotropic plate seems to be the first limit case while in the
second limit case the structure is represented by only two sets of parallel beams
providing generally a skew crossing. However, in most cases of practical interest
the both sets are perpendicular to each other with the girders (called also main — or
longitudinal beams) in the span direction and lateral (cross — or transversal —) beams
in the transverse direction. Very often the bridge deck or a floor slab is rigidly fixed
to one or to both the beam set. The beams are from reinforced concrete, prestressed
concrete or steel (mostly of closed box-section with new constructions); since rigid
connections are made at the points of intersection, the grid elements always resist
in torsion. The slab is mostly made from reinforced or prestressed concrete regardless
of the beam material. Because of the comparatively great thickness of the slab it is
impossible to neglect its composite action in bending, torsion and shear. Relative
importance of those two elements — the system of beams and the plate — varies with
varying structural arrangement. There is a continuous series of structures starting
with the grid with a very thin plate (or even without it) over a grid with a thick plate
up to a true plate of constant thickness. Similarly, the numbers of girders and cross
beams may vary in wide limits. The transition from a simple grid to an orthotropic
plate is accompanied by a considerable change in the influence of torsion as well
as the transverse contraction.

Many times it has been shown that the behaviour of all those structures may be
described — performing a transtition to an equivalent plate — by a partial dif-
ferential equation analogous to Eq. (3), i.e. the equation

o*w o*w o*w

(5) or g + 2H 6x26y2 + 0p —6_x4 = p(x, y) .

The transition from a material to a structural orthotropy is formally defined by
the change in the indices of the coefficients standing at the first and third members
in Eq. (5) and denoting the unit flexural rigidities (i.e. flexural rigidities of the
actual structure per unit length in the longitudinal and transverse directions res-
pectively, with respect to the centroidal axes of the cross-section). The torsional rigidity
4y,, of an orthotropic plate at the middle member in the equation is replaced by the
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sum of unit torsional rigidities y; and 7, of the structure in both orthotropy directions
(i.e. torsional rigidities of the actual structure per unit length) that is

(6) Ay, =97 + V5.

The torsional rigidity of a substitute structurally orthotropic plate varies between
zero and the plate (full) value.')

The influence of transverse contraction is marked in a general grid-work system
to a greater extent only with the proper plate (represented by the floor or the deck)
or with grid-work systems consisting of very fine net of crossing prismatic bars.
If the continuity of the cross-section is interrupted in some horizontal planes, the
transverse distribution of deformation is prevented. Hence, the influence of transverse
contraction is always lower with a substitute structurally orthotropic plate than with

.a full plate from the same material.

A similar relation to Eq. (2), i.e. the equaﬁon

(7) Vr@p = Vplr

will be adopted even for structurally orthotropic plates. in what follows where,
however, vy, vp are no more the Poisson’s ratios in the true sense. These quantities
denote the influence of the stress o,(c,) upon the deformation &,(¢,) and conversely
due, however, not to the anisotropy of material but to the structural orthotropy.
Naturally, Eq. (7) does not hold exactly with structurally orthotropic plates; it is
satisfied in the special case of affine orthotropy [5] for which

2H =2 \/(erep) -

A more detailed analysis of the problem has shown [3] that the errors due to the use
of the relation (7) for structurally orthotropic plates are sufficiently small in cases
of practical interest.

The coefficient at the middle member in Eq. (5) canbe — inagreement with Eq. (4) —
.wrltten as follows

H = (orvp + QPVT) + ('VT + 'VP)
or making use of Eq. (7)
(8) 2H = 2gpvy + (}’T + 'VP) .

The value of this coefficient depends not only upon the torsional rigidities of the
structure in both directions but also upon its contraction ability.

1) One can hardly imagine a substitue structurally orthotropic plate having the torsional
rigidity greater than an actual (materially) orthotropic or isotropic plate.
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Bending moments in a structurally orthotropic plate are defined by the formulae

02 o2
0 e = - (221 22)

while for the twisting moments we have

~2
10 Mon = 1 o‘w
( ) TP /Taxay
62
Mpr = —
6x6y

which means that for p; 4= yp generally IMxyl + ]M J,,,| in an equivalent structurally
orthotropic plate.
For shearing forces we have

- 33 3
(11) Or or 75 PaE — (erve ')’P)a 2y?
63 3
= — +
Qp 6 =3 (QP T 'J’T) ay

and the reactions are given by the expressions

~ 63w 3w
12 = - 3V _|_ _|_
(12) Or T o —(ervr +¥r 'J’P)a ay?
~ 3w 3w
Cr=—er s — (ervr + 1 +70) 51255

The evaluation of unit flexural rigidities g7, 0p and of the torsional reigidities
y1, ¥p is carried out for the actual shape of the construction; moreover it is necessary
to take accound of the transverse contraction influence upon individual parts of the
cross-section and their mutual interaction [2].

2.3. Limit cases

Structural orthotropy is characterized by unequal rigidities in both the orthotropy
directions. If the plate thickness is constant and if the cross-section (i.e. the moment
of inertia) does not vary unequal rigidities must be due to the different material
characteristics only. Consequently, the material orthotropy seems to be the first
limit case of structural orthotropy.
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It can be proved [4] that a simple grid (or two systems of parallel prismatic bars
or fibres) is the second limit case of a structurally orthotropic plane structure. If the
prismatic elements are rigidly connected at their points of intersection and resist
in torsion, the behaviour of the system considered is fully described by Eg. (5) If
both the systems of prismatic elements are not rigid in torsion (the so called “non-
torsion grid”) — or if they are hinged at the crossings — Eq. (5) reduces to the simple
form

a*w *w 64
Sa .+ 2 +0 x,y)=0.
(5a) or g 2PVr T3, ooyt 6 " — p(*, y)

The influence of transverse contraction may be neglected, provided that the spacing
of prismatic elements is sufficiently large; then Eq. (Sa) reads simply

o*w 64
5b — 4+ 0p — x,y)=0.
(5b) e Rl - p(x, ¥)
2.4, Boundary conditions
A simple bridge-type construction is assumed, i.e. a construction simply supported
along the two apposite edges x = 0 and x = I, and free along the remaining edges
y=+b (Fig. 1). If use is made of the Kirchhoff’s forces [10] at y = +b, the

boundary conditions are as follow:

Wi=0;n =0

2 2
(a—‘z + VP g—‘:> = 0
ox oy (x=0:l)
2
E
oy (x=0;0)
simply

2
(14) (_a_y;) =0
0x (x=03l)

(13)

or with respect to the fact

2 2
(15) ("’_W + v ¥ —0
ay* 0x* ) (y= 11
and
3w Pw
(16) (Q — 4+ [vTQP + yr + ')'p] 2 ) =0.
6y oy (y=1b)

467




3. DIMENSIONLESS PARAMETERS AND THEIR LIMIT VALUES

Inspection of the basic equation (5) and of the boundary conditions (13) — (16)
shows that all the cross-sectional and material properties of the structure may be
expressed in terms of three dimensionless parameters.

1. In agreement with [6] the relative lateral flexibility of the structure (the equivalent
plate) is given by the dimensionles parameter

(17) 92 t/é’l

IV er

which will be referred to as the parameter of lateral stiffness of the construction in
what follows. The greater 3, the more flexible is the lateral stiffness. The parameter 3 .
involves not only the cross-sectional charakteristics but also the in-plane dimensions
of the plate. The determination of this parameter its usually not difficult. The influence
of the material appears only in the case that the material exhibits different properties
in both the orthotropy directions. If the structure has an infinite rigidity in the trans-
verse direction, the parametr of lateral stiffness vanishes. With a structure which is
perfectly non-rigid in the transverse direction, this parameter will tend to infinity.
However, practical limits for this parameter in current cases of structures are 0-05 -=-
+ 50.
Consequently, the theoretical limits are

0<3=w
while the practical limits become
005 < 9 < 50.

2. Keeping in mind that the actual structure is replaced by an equivalent plate, the
flexural rigidity is given by the relation

’
(18) or = 2
1 — vpvp

where ¢r denotes the unit flexural rigidity involving the transverse contraction

influence, and g7 means the same rigidity without the contraction influence.
Substituting for v, from Eq. (7) into the above equation, we obtain

’

(19) or = Qr _ _@r
1 2 @p 11—

or

where the parametr contraction ability of the structure has been introduced defined
by the expresion

(20) n=vr |2,
or
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From Eq. (19) it follows that

(21) N = \/QT — @7
or
The parameter of contraction ability depends partly upon the flexural rigidities ratio,
and partly upon the transverse contraction coefficient v;. The smaller the transversal
rigidity of the structure (i.e. the greater 9), the smaller is the influence of transverse
contraction. The greatest value of this parameter is vr (for o plor = 1since @ P/QT >1
has no practical application); while the second extremum, which is zero, is reached
for negligible transverse flexural rigidity.
Consequently,
0Zy=vr

. for all structures of practical interest.
3. The multiplier of the middle member with respect to Eq. (8) is
2H = 20pvr + (yr + 7p) -
Dividing this equation by 2 \/(¢7¢s) and employing Eq. (20), we obtain in
(22) 2H Yr + 7p

2 Jewer) 2 J(erer)

the non-dimensional coefficient of the middle member in the Huber’s equation of
the equivalent orthotropic plate. Relative torsional rigidity of the structure is, ac-
cording to [11], given by the dimensionless torsional parameter

r ’
(23) P L ek 2
2 \/ (QTQP)
where o7, 0ps Y7 ¥p denote unit flexural and torsional rigidities of the structure for
7ero transverse contraction coeficient of the material. Assuming

0 0 Y Vs
. QT=—_T_5, QP=—_P‘—2a Yr = L s Yp= E

and making use of Eq. (20), we have

o = Yr + 7Pp
4) 2(1 ~ n) J(erer)

Combining Egs. (22) and (24), we obtain

(25) 2H = 2¢ \/(erep)
where
(26) e=n+all —n)=a+nl-a
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is the middle-member parameter of the Huber’s equation of the equivalent ortho-
tropic plate. The torsional parameter of an arbitrary structurally orthotropic system
lies evidently between the limits')

0gaxl.

The middle-member parametr of the Huber’s equation ¢ is then bounded by the limits

n<esl.

4, METHOD OF DIMENSIONLESS COEFFICIENTS

Many of the current methods of solving the basic differential equation of the
considered structures lead to practically untractable calculations, if the designer’s
equipment represent only a slide rule or a calculating machine. There are thus two
ways of attacking the problem: either to employ the current methods in connection
with a computer, or, which seems to be more simple, to make use of a practically
applicable approximate method. One of the latter methods is the method of dimension-
less coefficients; by means of those coefficients all the inner force components are
expressed which are necessary for the design of the structure. This method is based
on two fundamental assumptions:

a) It is possible to investigate an equivalent orthotropic plate instead of the actual
system represented either by an orthogonally stiffened plate or by a grid (either
connected with the pldate or without the plate). The rigidities of the actual system
are continuously distributed so that the elastic properties per unit legth of the actual
and equivalent systems are the same. The equivalent plate is then solved as a plane
problem. If the values of dimensionless coefficients are tabulated, the calculation
simplifies to a great extent, and at the same time the accuracy of the results shows to -
be quite satisfactory even in the case that all the remaining numerical operations are
performed on a slide rule.

b) Actual loading corresponding to the initial system is replaced by a loading
expanded into a sine-series in the girder direction

. mnx
p(x) = LPnsin 7
m

where p,, denotes the amplitude of the m-th member of the appropriate Fourier
series (Fig. 2). In the transverse direction the loading distribution of the equivalent

1y Since any structurally orthotropic plane structure represented by a plate and by prismatic
elements may be interpreted as a plate, with thickness equal to the greatest depth of the cross-
section of the structure where, however, the mass between adjacent prismatical elements have been
taken away. The upper limit (the unity) can be reached only in the case of a cross-system of girders
having small spacings. In this very case the structure represents actually a plate with small openings.
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plate is defined by the basic equaltion of the problem, Eq. (5). Massonnet [11] has

shown that in most cases the assumption of the loading distribution in the form of
the first member

p(x) = p,y sin %

leads to sufficiently accurate results.

X 3
l.E.;
X £
T— ________________ E K -+
?T.TT ("‘n ;_"":.,
o |l ™ =l
?PJ'P
[ S — ookl N
Fig. 1. Fig. 2.

The above given two basic assumptions influence the distribution of loading effects

in the transverse direction only. The rest of the analysisis governed by the usual rules
of structural mechanics.

The solution of the basic equation (5) is obtained as a sum of the particular integral
1y and of the integral >w of the homogeneous equation, that is

(27) wx, y) =1w + %w.

The deflection surface w(x, y) of a bridge type plate under a harmonic loading
(28) p(x) = Xpn sin m—;m

is represented by a similar function

(29) w(x, y) = ;W(y),,, sin -’%

which in the X-direction is governed by the same harmonic law. The values of W(y)
are then found from Eq. (27) at the plate edges.

All the inner force components, expressed by derivatives of the function W(x, »),
as given by (29), are then put down as a product of two functions, one of which is
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a function of the dimensionless parameters 9, «, 5 (resp. v), ¢ (defining the relative —
non-dimensional — transversal coordinate of the point in which the effect considered
is to be determined), ¥ (defining the relative transversal coordinate of the point
where the loading is acting), and the second of them having the dimension of the
respective inner force components and depending upon the outer dimensions of the
structure, the magnitude of the loading, flexural and torsional rigidities, and upon
the non-dimensional coordinate & = x/I (defining the longitudinal coordinate of the
point in which the effect considered is to be determined). This fact simplifies the
calculation to a great extent, since it is possible to tabulate the first function, which
is rather complicated in form, in dependence upon the dimensionless parameters.
The calculation of the second function as well as the calculations of the respective
inner force components itself is then quite elementary — the extent of the work
necessary is about the same as when solving a truss.

From the fact that the first function is non-dimensional, the name dimensionless
coefficient has been derived. Nevertheless, the method is practically applicable only
owing to the following two facts:

A. A general line loading expanded into a Fourier series in the X-direction requires
usually more than one member of the series for sufficiently accurate expression of
the inner forces (moments, shearing forces, reactions). If the coefficients must be
evaluated for more members of the series, the calculations become considerably
complicated and the tables would be of no use because of their great number. Fortu-
nately, 2 more detailed analysis of the derived equations shows that the m-th member
of the series corresponding to the loading distribution p(x) = ) p,, sin mrnx/l upon
a system whose lateral stiffness is 9 is equal to the first member upon a structural
system with an m-times more flexible stiffness in transverse direction, i.e. with the
parameter of lateral stiffness equal to m3. In other words: the lateral stiffness for
the loading p(x),, = p,, sin mnx/I becomes m-times more flexible than for the loading
P(x) = py sin nx[l. This knowledge is very important since it enables to tabulate
the dimensionless coefficients for the first member only, that is for m = 1, but to
make use of them for any arbitrary member of the expansion. The coefficients
X(y)1» X(¥)2> X(¥)3 .. X(»),, for the loading p, sin nx/l, p, sin 2nx/l, p; sin 3nx/l ...
P sin mnx/l are obtained from the tables of the values X(y), successively for 3, 23,
33... md.

B. Dimensionless coefficients X depend aside from ¢, i also on the dimensionless
parameters 3, «, # which may assume arbitrary values within their intervals of defini-
tion (cf. Sec. 3). Thus, it would be necessary to tabulate each coefficient X in each
system ¢,  for all th: combinations of the three parameters 3, «, # employing suf-
ficiently fine subdivision. This fact would prevent practical application of the method
described. The possibility of application is, however, saved by the fact that the varia-
tion of the dimensionless coefficient X with « and 7, respectively, in their definition
intervals (between the limits) is represented by a smooth, mostly monotonic and
easily expressible interpolation function. It has been shown that the following para-
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bolic interpolation formula
(30) Xk = Xmin + (Xmax - Xmin) F(k)

may be employed for the interpolation between the limit (and basic) values of the
parameters & = 0, « = 1 and # = 0, = 0-25, respectively.

In this way the necessary tables of dimensionless coefficients are reduced to an
reasonable extent: as concerns the practically important values of the first parameter
3 (from 0-05 up to 5-0) the coefficients must be tabulated only for the two limit values
of the second and third parameters, respectively (¢ = 0, « = 1 and # = 0, # = 0-25).

Analysis of the form of the expressions for the dimensionless parameters as func-
tions of & and # has shown that it is more convenient to interpolate first the value of
X = f(, n) with respect to # (successively for @ = 0 and « = 1) and then with respect
to a. Thus, first the functions X,,,, and X,,, are expressed in terms of the basic
functions Xy,9, Xo¢,0,25» X1;00 X1;0,25- After that the interpolation between X,
and X, ., is performed, that is the function X, , is found. The value of F(k) differs
slightly for different dimensionless parameters; this value depends not only upon
«,  but also upon 9, ¢ and Y which means that it is necessary to determine F(k) for
each dimensionless coefficient separately.

4.1. Homogenecous equation solution of a structurally
orthotropic plane structure

The homogeneous form of Eq. (5) is obtained for vanishing right-hand member.
The solution of such an equation is assumed according to M. Lévy in the form of
a series

(31) Wy = 3, ¥(p)n sin @

each member of which satisfies the boundary conditions (13) along the two simply-
supported edges x = 0 and x = I, respectively. The function Y(y), is then found
from the condition that the homogeneous differential equation corresponding to
Eq. (5) be satisfied. In a manner similar to that employed in [11] the following
function is arrived at

(32) Y, = ™[4, cos mty + B,sin mty] + e"™[C,, cos mty + D, sin mty]

where

R e S~

B,—— 2mn- p

473




4.2, Particular solution of a structurally orthotropic
plane structure

In order to find a particular solution to our problem, it is convenient to consider
a simply-supported plate strip (i.e. a plate of infinite width simply-supported along
x = 0 and x = [), instead of the given bridge plate. The form of the particular
solution depends upon the form of the loading. General loading may usualy be
expressed as a sum of a uniformly distributed loading (across the width) and a line
loading. The loading distribution in the X-direction is quite immaterial since it can
be approximated by a Fourier series — Eq. (28). Thus, only the two basic special
cases of loading described above will be considered in what follows.

4.2.1. Line loading harmonically distributed in the X-direction

A plate strip in the Y-direction under a line loading harmonically distributed in
the X-direction is considered

b X P(X)m = P sin m_;v_c

(Fig. 3).

In a similar manner as used in
[11] taking into account the fact
that the twisting moment influence
7 upon the shearing force at the point
of application of the loading van-
ishes in the case considered, which
* ' Y means that the condition of the
shearing force distribution in the
X-direction

+-

RN |
y

a0

pm Dm

o
AN

AN

Fig. 3.

*w  [yr 3w Pm . MTX
—Qr|o 3 F|— + v = — =2sin — .
e [5}’3 (ep T) 6x’5y],=o 2 ! [

may be reduced to the simple form

[ 63w] Pm . mnx)
—er— | =-32sin—"]),
0y> |0 2 1

the following particular solution is obtained

(34) 'w, = C} e mmlv=el {cos mtly — e| + \/(i

+ &\ . . mnx
)sm mtly - el} sin —.,

— 8 1

rz i
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4.2.2. Loading distributed uniformly in the Y-direction
and harmonically in the X-direction

The deflection surface of an infinite simply-supported plate strip under the loading
considered (Fig. 4) is represented by a cylindrical surface defined by the beam-
‘equation

41,0 0 0 %l"’
) e 2
T T = 4'55’:-
where p°(x) and pj, respectively, denote the ? -é’;&’.“
loading and loading amplitude per unit width. /\j (P € )
Particular solution of the above differential (—— H“
equation reads —— 5
0 l4 ,"li: j,
(35) g = 22— sin T S===——ma
grmT l ) Y
Fig. 4.

4.3. Total solution of a structurally orthotropic
plane structure

Total solution of the problem considered is obtained — Eq. (27) — as the sum

of the homogeneous equation and particular solutions and depends upon the boun-
dary conditions as well as upon the loading.

4.3.1. Line loading harmonically distributed in the X-direction
A simple bridge structure is considered under a line loading acting in the distance

¢ from the X-axis and varying harmonically in the X-direction. Total solution of the
present problem is obtained as a sum of the results (31) and (34) with respect to Eq.

27)

(36) W, = W, + 2w, = {e""’”[A,,, cos mty + B, sin mty] +

+ e"™[Cm cos mty + Dm sin mty] + C* g~mlvel [cos mily — ¢| +

+ \/(i + 8) sinmt |y — el]} sin -nl;—tf = W(y)y sin rn—;t—’f .
—¢

Constants of integration A, B,, C,, D, are calculated from the condition that the
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total solution w,, satisfies the boundary conditions along the free edges. These con-

ditions follow from Egs. (15), (16); with a little rearrangement Eq. (16) is

3 2 2
(162) g» - {f’— el } .
ay 6 y==b

Carrying out the appropriate differentiation of w,, given by Eq. (36) and applying
the boundary conditions (15), (16a), the following four algebraic equations are re-

ceived for the unknown constants A,,, B,, C,, D,:
Aty = +b from Eq. (15) it follows that

(37a)  e™{[(e — 1) Aw + V(1 — %) B,] cos mtb + [~ /(1 — &%) 4, +
+ (¢ — ) B,,] sin mtb} + e~™{[(e — 1) C,, — V(1 = &%) D] cos mtb +
+ [J(1 — &) C,, + (¢ — 1) D,,] sin mtb} +

+ C* gmlb=el I:(l — ) ( )sm mt|b — e| — (1 — ) cos mt|b — el]

Aty = —b from Eq. (15), we have

(37b) e™™{[(e — 1) An + (1 — €%) B,] cos mtb + [ /(1 — &%) 4,, +

+ (=& + ) B,] sin mtb} + ¢™*{[(e ~ 1) C,, — \/(1 — &%) D,y] cos mth —

— [J( = &) Cp + (e — 1) D, sin mtb} +
+ Cpye~mbre [(1 ) ( \/ )sm mi(b + e) — (1 — n)vf:os mt(b + e)] =

At y = +b from Eq. (16a) it follows that

(38a) o {[(—1 + 1) \/(i * 2) A+ (1 +1) B,,,] cos mib +
¥ [— (14 ) Ay + (=1 + 1) \/C * Z)E,,,:Isin mtb} ¥

{[1 — 1) ( )c +(1+11)D:|cos mtb +
resct oo

+ 1—2 Cre™™=¢l(s — n) sin mt|b — ¢| + /(1 — e*) cos mt|b — e|] = 0.
— e o
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Fi,. 5.

| Fig. 6.

' And finally at y = —b from Eq. (16a), further

e
RETEN = L B R RN

L~ I PV

o
Q

ol

n =
~.

1
1

)C,,,+(1+11)5,,,]cosmtb+(1+11)C,,,—

+8>Am+

— &

+ 1+ 9 B,,,] cos mtb + [(1 — ) A+ (1 — 1) \/(i—“:g) B‘,,,:l sin 'mtb} -

2

| 1—e¢

Crne ™" (e — n)sin mt(b + €) + /(1 — e*) cos mt(b + )] = 0.
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| 14 1,025
et 2
T Y=y y=0 | 7-02%
015 T T —

Introducing ¥ = ne/b, ® = n9/b, and making use of Eq. (33), we obtain

(39)

1 —

n(b+e)=.9\/(1;"°')(n+¢)=n'(n+l//)

. t(b+e)=9\/(

: 8)(n+¢)=t'(n+¢)

nlb — =9\/(1:8>(1t—l//)=n'(7t—l//)

t|b — e =_s\/<12_6

)(n—¢)=t’(n—l//).

In order to simplify the writing the following notation will now be used

(40) K = (™" + e"™") cos mt'n
L =(e™" — "™ ™) cos mt'n
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Fig. 9.
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Fig. 10.

I = (™" + e ™) sinmt'n
J = (™" — e"™%) cos mt'n
E = Cle ™ V[(1 — ) asinmt'(x — ¥) — (1 + 1) cos mt'(x — ¥)]
F = Che ™ @ W[(1 — n)asinmt'(zx + ¥) — (1 + 7) cos mt'(z + V)]
G = 2C% ¢~ W[

"smmt(n— ¥) + a cos mt'(x — l//)jl

- ZC* —mn’(z+)) [1 n sin mt (n + lﬁ) + a cos mt (7!.' + lﬁ)]

n, =K —1n) - JJ1 —e?) ny =Le—1n) —I(1-2%
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Fig, 12,

n2=K\/[2(1+e)]+J_u__ ny = Ly[21 +€)] +1 £E—7

J) J&=)

Adding and subtracting Egs. (372) and (37b), (38a) and (38b), after some calculation

we have

(41)

480

(4, +C)ny + (B, —D)n, + E+F =0
(Am—cm)n3+(Bm+Dm)n4+E'—F =0
(4 + Co) s —~ (B — Dp)ng — G — H =0

(4 — Cpyn; — (B, + Dp)ng — G+ H=0.




S
(2

Fig. 14.

o
QM e

. Further simplification may be reached by putting

(42)

and further

G—-—H E+F
= - S =
S cE
R G+H  _E-F

ct G

n1n5 + n2n5 = V1
ning + nun, =V,

U = Vy(Qn, — Tng)
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W = Vz(an - Snﬁ)
= Vz(Rnl + Sn5)
Y = Vl(Qn3 + Tn7)

b
[

The constants of integration may now be expressed as follows

L ]
“3) An =S (U + W) = CA,
2V1V
B, = (X +Y) = C1B,
2V1V2
L ]
C, = Cr (w-U) = czc,
2V1V2
D, = — (X Y) = C*D,,.
21/1112
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Fig. 17.

-10

Substituting the above results into Eq. (36), the total solution of a structurally
orthotropic plane structure under a line harmonic loading p(x) = p, sin mnx[l is
obtained. In order to simplify the writing further, we introduce ¢ = ny/b and put

(44) M, = €% cos mt'p
. Nyw = €™ ?sin mt'ep
O, = €~ ™% cos mt'¢
P,, = e ™%sin mt'p
Qip-yim = €™ 1* ¥ cos mt'lg — Y|
Pipoyim = €™ 10 ¥ sin mt'|o — ¥

The deflection surface is then given by the expression
(362) W%, Y)m = Co{[4nMom + BuNom] + [CriOpm +
+ DpPom] + [Ojp-yim + aPyym]} sin lnTmf s
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Fig. 18.

Fig. 19,

R E— _

'koio,&f
A=0
=025

or Simply

Pul® -
° wx, )y = ———— K  sin 117
( ) ( y) 2bm4n3QT (y) l

where the ratio standing at the right-hand side has the dimension of the respective
quantity (length unity) and K(y),, denotes the first dimensionless coefficient depen-
ding upon ¢, ¥, 9, « and 4 as follows:
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v

m3
~ JE + 9]

- B;-Pw] + [oltp-lﬂm + aPle’-Mm]} . 1)

(46) K(y),,, = {[A;:szm + BN, zpm] + [C:,,O,p,,, -

Plots of this first and fundamental dimensionless coefficient K = K(y)l versus 4
are given in Figs. 5—24for¢ = 0, = 1 and = 0, n = 0,25 and for various values
of ¢ and V¥, respectively.

4.3.2. Loading distributed uniformly in the width-direction
and harmonically in the X-direction

Similarly to the foregoing case, the total solution for the present loading is found
as a sum of the homogeneous equation solution (31) and the particular solution
(35), that is

4.0
47 wo(x, P)m = P + ™[ A} cos mty + B, sin mty] +
‘ ng4m4 .
. + e~™[C} cos mty + Dj sin mty]} sin m—;”—‘ .

For the structure of the width 2b a uniformly distributed loading
. mux
(43) p°(x) = plsin —7;-
1y For # == 0 the present coefficient K(3),, is the 1/z-multiple of the Massonnet’s coefficient
[11, 12}, i.e.

1
[K(y)m]n =0 =-;KMAss(y)m .
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may be assumed as a mean value of a line loading considered in the foregoing section,

so that

The constants of integration are again obtained from the boundary conditions (15)
(16a) at the free edges with the deflection surface defined by Eq. (47). In this way
four algebraic equations for the unknown constants A%, B2, C2, and D, are arrived at:

At y = +b from Eq. (15) it follows

(49a)

486

e"*{[(e — n) 45 + (1 — &*) B3] cos mtb +
+ [(e — n) BS — /(1 — &?) 4%] sin mtb} +

+ ™™ {[(e — ) C3 ~ /(1 — &%) D%] cos mth +

+ [(e — ) D}, + /(1 — €*) CY] sin mtb} — 7 ;

4,0
EPn__ .

T7I4m4

Fig, 21,

-




.

At y = —b from Eq. (15) similarly

. (49b) e{[(e — 1) Co — /(1 — &%) D?] cos mtb — [(e — 1) Dy +
+ (1 =) oL} + e ™ {[(e— ) A% + (1 — &%) B2] cos mtb —

—[(8_’7)33.—\/(1 2)Ao]smmtb}—1101‘1:"'4—0_

m
Aty = +b from Eq. (16a), we have

(50a) e {[n 1) \/(l + *") A+ (n+ 1) \/ ! ; *")Bg] cos mtb +
o5t 5 -
Y
oot (e

And finally at y = —b from Eq. (16a) it follows that

o = [0 (5 (5 o
Y o e
oo ) enen
[ JE3menn (5)]em -

; 8)]?3, ] cos'mtb +
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Fg. 23,

,(/0,-0,25
a=0

S

If we use the relations (40) for K, L, I, J again and further analogically to (39)
and (4) " '

1) wenr = (L2

th = t'n t’=8\/(1_8)
2

M,, = "™ cosmnt'; 0., = e ™ cos mnt’
N,, = €™ sin mnt'; P,, = e ™ sin mar ,
still introducing
14 0
e crr = L8

QT7T4 m4

we obtain the following system of equations by adding and subtracting Eqs. (49a)
and (49b), (50a) and (50b):
(53) (ms + mq) (A9, — Co) + (mg + mg) (B + DY) =0

(ms — my) (43, + C2) + (mg — mg) (BS, — DY) =0

(my + m3) (4p + Cp) + (mp — m) (B}, — Dy) = 2C3*

(my = my) (43 — CB) + (my + m,)(BS + DY) = 0.
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Fig. 24.

L
. where

(54) my = [Mnm(s = 1) = Num \/(1 - 82)]
my = [Mpy /(1 — &) + Npye — )]
My = [Op(e — 1) + Ppp /(1 — €2)]
my =[—0pm /(1 — €%) + Prle — n)]

me = [Matn - 1) (152 Nl + 1) (5

)-
m;=M(n+1)\/(1 )+N(11—1) (1
S ]
& [" "’“’J( )=l -0 (5]

In order to simplify the writing, we put (employing Eqs. (40) and (51))

59t m) =t 0 (15 J( Y= 5

]
gl

N+N

2

e () v (5 5

(my + m3) =K(e—1n) — JJ1 — &) =n
(my —my) =K. J(1 — &)+ Je—n)= (Lg_&) n,

)n

)
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and further
ning + Ransg = yA

then the constants of integration are given by the expressions

C**p
(56) An = Cp = 2% = Ci*AY = CI¥CY
Ch*n
B?"E _D'?':_ mZ 5= _C:*BglEC:*Dr(’)ll.
[
05 Va4 ’(/0,- 0,25
” w0, 9= 25
yob a57%% | pig. 2.
o
22 v ‘/1,-0,25
’ 0 b y=b a-1;70%5 |  Fig. 26.
4,
9 3 =

Substituting for the constants of integration into Eq. (47), we obtain the total solution
of the problem of a structurally orthotropic plane structure under a loading distributed
uniformly across the width and harmonical in the X-direction p°(x) = pS sin mznx;/L
The deflection of the structure investigated is thus

04 , —o, . mnx
(57) W%, Ym = Lo {1+ q[AY (M + Opm) + B%N oy — P,)]} sin 25
ornm ) l
or simply )
074
(57a) wo(x, ¥)m = % [1 + K%y),,] sin nex.
ormtm l

where the first member has the dimension of the deflection (Iength unity) and K°())m
denotes further dimensionless coefficient depending upon ¢, 9, « and n

(58) K = 1[AY(M o + ) + BN — Pr)].

Since the m-th member for the loading p%(x),, = p, sin mnx/l equals again to the
first member upon the same structure having the flexural rigidity parameter m-times
greater, it is also sufficient to tabulate the coefficients K°(y), (for m = 1) only. Plots
of the function K° versus 3 are given in Figs. 25 and 26 fora = 0, = 1 and n = 0-25,
and for various values of ¢ respectively.
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4.3.3. Procedure for a general loading

Any general loading may be expanded into a Fourier series; for the coordinate
system employed (Fig. 1) it is convenient to use the antisymmetric (odd) form with
respect to x = 0, which is the sine-series for which p(—x) = — p(x). The pertinent
formulae can be found e.g. in [4]. With the aid of those formulae it is possible to
solve any structurally orthotropic structure of the simple bridge type under arhitrary
loading. The solution obtained in this manner may be regarded as an “exact” solution
since it takes account of the actual distribution of the loading, while the solution
based on the assumption of one sine half-wave loading seems to be a rather approxi-
mate one. ,

4.3.4. Properties of deflection functions

Applying the Maxwell’s reciprocal theorem to the first case of the loading (line
loading in the X-direction) according to which the deflection at the point y of the
cross-section due to a unit loading at the point e is equal to the deflection produced
at e by a unit loading at y, that is

(59) Wye = We .

The mean deflection (1/2b) 22 w(x, y)dy ata certain cross-section y of a system under
a harmonic line loading p(x) acting at e, must be equal to the deflection wo(x, y) at
y = ¢; due to a uniformly distributed (across the width) loading p°(x) = p(x)/2b,
so that
+b

(60) 1 we(x, y)dy = wo(x, e)
),

where the deflections w,,(x, y) and w(x, e;) are given by Egs. (36a) and (57), respec-
tively. Dividing Eq. (60) by the deflection w°(x, e;), we obtain

1 +b
61 —— | w.(x.)dy=1.
(61) T ei)j—b (x.y)dy

]

Since the exact calculation of the integral in Eq. (61) is difficult, it is convenient
to employ some of the methods of numerical integration. Then all the well-known
general principles for numerical quadrature hold true: the step chosen must be
considerably smaller than is the distance between two adjacent zero values of the
function and its derivative, respectively, and the shape of the integrated function
(especially as concerns the location and the number of zero points) should be similar
to that of the approximating function. The most widely used methods of numerical
integration are the trapezoidal and the Simpson’s rules. Subdividing the width 2b
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of the structure into eight equal parts of the length 2b/8, we have an odd number
of coordinates (i.e. 9) and the integral may be expressed as follows:

(622) ' I " we, (%, y) dy =

-h —

2b
o~ 2 [Wo + wg + 4wy + wy + ws + wy) + 2wz + Wa + We)]e

according to the Simpson’s rule, and

(62b) .rbw,, (x, y)dy =

-b

IR

2b Ws
— +w1+w2+w3+w4+w5+w5+w7+—
8|2 2 Joun

according to the trapezoidal formula.

Making use of Eq. (61), we may write

(63a) wo+we+4 T w2 Y Walow = 89%x, €)
n=1,3,5,7 m=2,4,6
7
(63b) [3(wo + wg) + le,,]e‘(,) = 8wo(x, ¢;) .

Naturally, the Simpson’s formula cannot be applied — with the step chosen —
to areas corresponding to great 9. In this case the main part of the area is concentrated
in the neighbourhood of the point of application of the loading, inside a strip of the
width 2b/ 8. Then, either the trapezoidal formula, a finer subdivision or a more exact
method must be employed.

All the relations derived in the present section for w(x, y) hold true even for the di-
mensionless coefficient K(y)since it represents a reduced value of the deflection only.
Especially, we have

(592) K.,

(61a) K. (y) =

T K@,,J

The relations (59) and (61) provide an excellent check upon the numerical calcula-
tions.
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4.3.5. Special cases

For o = 0 and # = 0 (and consequently also & = 0) all the relations pertaining to
w(X, ¥)m and w°(x, y),, respectively, simplify considerably, and the results coincide
exactly with the results given by Guyon [6] for a non-torsion grid or derived by
Massonnet [11, 13] on the basis of the analogy with the behaviour of a beam
system resting on an elastic foundation as described by Hétényi [8]. In the case

va=1, 7 =0 the results of the present analysis are identical to the results of
Guyon [7] derived for an isotropic plate. If 9 -0, 7 =0 and simultaneously

@ = ¢ =0, the results coincide with the Engesser’s solution. The case 3=0,

7 =0and & =& > 0 has been investigated in [4]; such a system deforms into a

¢ cylindrical surface even in the case that the loading is excentric with respect to the
X-axis. For 8 — 0 the results obtained by the present method are in agreement with

this fact. .

METHOD OF DIMENSIONLESS COEFFICIENTS FOR ANALYSIS
OF STRUCTUALLY ORTHOTROPIC PLANE STRUCTURES

PART 1

The method of analysis by means of dimensionless coefficients of structurally orthotropic plane
structures of simple bridge type has been derived on the basis of the analogy with material ortho-
tropy of plates. This method takes account.not only of flexural and torsional rigidities but also
of the contraction ability of the structure, Any structure of the type described is defined by its
outer shape and its loading, and by the three dimensionless parameters. Basic relations pertaining
to the harmonic line loading and harmonic uniformly distributed (across the width) loading are
derived, and the properties are discussed of deflection functions composed of a simple dimensional
part and of a complicated dimensionless coefficient, The value of dimensionless coefficients are
given in graphical form for limit values of the torsional parameter « and the parametr of contrac-

< tion ability # in dependence on the parameter of lateral stiffness 3 varying in the limits (0; 5.0):

. [Received April 10, 1973]
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